

"ALESSANDRO ROSSI" - VICENZA -

GARA NAZIONALE DI ELETTROTECNICA 2015

Seconda prova

Vicenza, 8 maggio 2015

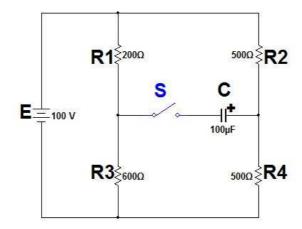
In collaborazione con

- VICENZA -

TESTO DELLA PROVA

ELETTROTECNICA-ELETTRONICA - Quesito 1

Tre condensatori piani sono collegati in serie ed alimentati da una tensione e(t) crescente. Le capacità C, le distanze d tra le armature e le rigidità dielettriche K_{max} valgono rispettivamente:


$C_1 = 80 \mu F$	$d_1 = 1.5 \text{ mm}$	$K_{1\text{max}} = 14 \text{ kV/cm}$
$C_2 = 1.5 \text{ mF}$	$d_2 = 2.5 \text{ mm}$	$K_{2max} = 8 \text{ kV/cm}$
$C_3 = 2.5 \text{ mF}$	$d_3 = 5.0 \text{ mm}$	$K_{3max} = 5 \text{ kV/cm}$

Sapendo che alla rottura del dielettrico i condensatori si trasformano in un corto circuito, determinare la tensione di prima rottura e descriverne le conseguenze.

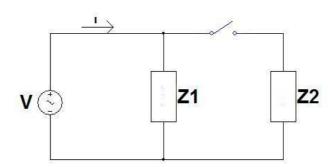
ELETTROTECNICA-ELETTRONICA – Quesito 2

Nel circuito di figura la tensione iniziale del condensatore è di 40V. Determinare l'istante in cui la tensione del condensatore si annulla dopo la chiusura dell'interruttore S.

ELETTROTECNICA-ELETTRONICA – Quesito 3

Tre conduttori rettilinei e paralleli lunghi 8 metri sono disposti ai vertici di un triangolo equilatero la cui altezza è $2\sqrt{3}$ metri. I conduttori 1 e 2 sono attraversati da correnti I_1 e I_2 uscenti mentre I_3 è entrante.

Determinare modulo, direzione e verso dell'induzione \vec{B} e della forza \vec{F} agente sul conduttore 3. $(I_1 = I_2 = I_3 = 0.5A)$.



- VICENZA -

ELETTROTECNICA-ELETTRONICA – Quesito 4

Nel circuito di figura l'impedenza $Z_1 = R_1 + J\omega L_1$ ($R_1 = 30\Omega$ $L_1 = 120$ mH) è alimentata a frequenza industriale. Chiudendo l'interruttore il valore efficace della corrente I non cambia. Stabilire la natura dell'impedenza \dot{Z}_2 determinandone gli elementi che la caratterizzano.

.....

ELETTROTECNICA-ELETTRONICA – Quesito 5

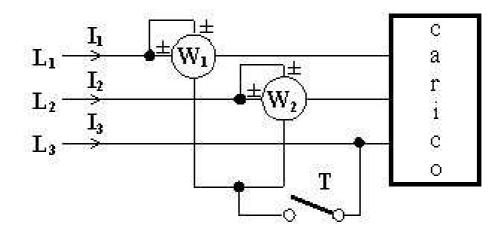
Tre impedenze uguali di valore $\dot{Z}=30+j40~\Omega$ sono collegate a stella ed alimentate da una rete trifase a 4 fili la cui tensione concatenata vale V=400V e frequenza f=50Hz. Per errore la stella di impedenze è stata collegata tra 2 fili di fase ed il neutro anziché tra i 3 fili di fase. Determinare:

- a) Le correnti di linea
- b) Le tensioni esistenti ai capi di ciascuna impedenza

ELETTROTECNICA-ELETTRONICA - Quesito 6

Una linea trifase alimenta con tensione concatenata V = 400V f = 50Hz un carico equilibrato R-L che assorbe una potenza di 8kW. Un wattmetro posto in quadratura con l'amperometrica sulla linea 3 fornisce l'indicazione di 4540W. Ponendo in parallelo una batteria di condensatori l'indicazione di tale wattmetro diviene 2235W. Calcolare:

- a) Il cosφ e la corrente I del carico
- b) La potenza reattiva Q_C della batteria di condensatori



- VICENZA -

ELETTROTECNICA-ELETTRONICA - Quesito 7

Una linea trifase alimenta con tensione concatenata V = 400V f = 50Hz un carico equilibrato a stella di impedenza $\dot{Z} = 20 + j15 \Omega$. L'impedenza sulla fase 3 si trasforma in un corto circuito a causa di un guasto. Determina le indicazioni dei wattmetri W_1 e W_2 Aron posti sulle fasi 1 e 2 con interruttore T aperto. (Si suppongano identici i wattmetri).

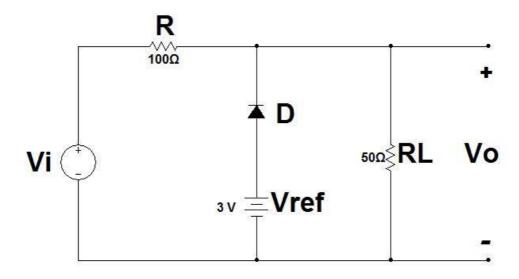
ELETTROTECNICA-ELETTRONICA - Quesito 8

Siano A e B due trasformatori monofasi per i quali risulta $K_{0A} = K_{0B}$ e $V_{1nA} = 2 V_{1nB}$. Si facciano le opportune considerazioni sulle seguenti condizioni di funzionamento:

- a) A in parallelo con B alimentati alla tensione $V_1 = V_{1nA}$
- b) A in parallelo con B alimentati alla tensione $V_1 = V_{1nB}$

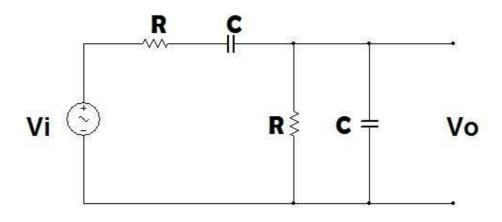
ELETTROTECNICA-ELETTRONICA - Quesito 9

Spiega in che modo la rete di polarizzazione a 4 resistenze di un BJT è in grado di stabilizzare il punto di lavoro a riposo Q e renderlo così meno sensibile alle variazioni parametriche dell'h_{FE} del transistor.



- VICENZA -

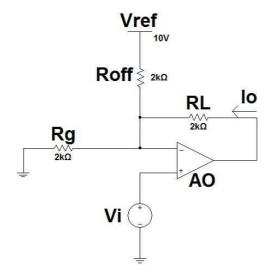
ELETTROTECNICA-ELETTRONICA - Quesito 10


Dato il seguente circuito determinare analiticamente e graficamente la transcaratteristica V_0 = $f(V_i)$. Caratteristiche del Diodo: V_γ = 0.7V R_d = 0 Ω R_i = ∞ .

ELETTROTECNICA-ELETTRONICA – Quesito 11

Determinare modulo e fase della $G(j\omega)$ del seguente circuito per $\omega = \frac{1}{RC} rad/s$ e determinare l'espressione della tensione di uscita $V_0(t)$ quando il circuito è sollecitato da una tensione di ingresso: $V_i(t) = 6 sen\left(\frac{1}{RC}t\right)V$

ELEMPOSECNICA OIS



- VICENZA -

ELETTROTECNICA-ELETTRONICA - Quesito 12

Dato il seguente convertitore tensione-corrente non invertente (VIC), determinare la relazione I_0 = $f(V_i)$ e disegnarne il grafico supponendo che il segnale di ingresso V_i abbia valori compresi tra 5V e 10V. Si consideri ideale l'AO.

ISTITUTO TECNICO INDUSTRIALE STATALE

"ALESSANDRO ROSSI"

SISTEMI AUTOMATICI - Quesito 1

Dato il sistema con funzione di trasferimento $G(s) = \frac{10}{2s+5}$, al quale viene applicato un ingresso a gradino di ampiezza 1.5,

- a) ricavare la risposta u(t);
- b) calcolare il tempo necessario a raggiungere metà del valore di regime;

SISTEMI AUTOMATICI – Quesito 2

Dato il vettore di 30 elementi contenente le acquisizioni di temperatura da parte di un sistema a microcontrollore

double temp[]

realizzare con un linguaggio ad alto livello la porzione di codice che ricava il massimo ed il minimo delle temperature contenute nel vettore.

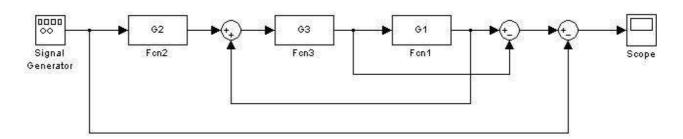
SISTEMI AUTOMATICI - Quesito 3

Un automa a stati finiti presenta un ingresso a 2 bit ed una uscita a 3 bit con le seguenti caratteristiche:

- inizialmente l'uscita vale 101;
- per ingresso 10 l'automa incrementa il valore dell'uscita in modo ciclico (up counter);
- per ingresso 00 l'automa si ferma nello stato corrente (pausa)
- per ingresso 11 l'automa si porta allo stato con uscia 000 (reset)
- per ingresso 01 l'automa decrementa il valore dell'uscita in modo ciclico (down counter)

Realizzare il diagramma degli stati secondo il modello di Moore.

ISTITUTO TECNICO INDUSTRIALE STATALE


"ALESSANDRO ROSSI"

SISTEMI AUTOMATICI - Quesito 4

Ricavare la funzione di trasferimento del sistema seguente.

dove

$$G1(s) = \frac{4}{2s+1}$$

$$G2(s) = \frac{10s}{s+2}$$

$$G3(s) = 1 + 2s$$

SISTEMI AUTOMATICI – Quesito 5

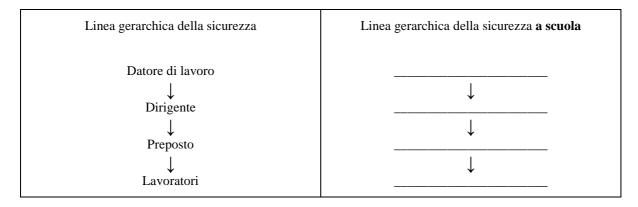
La risposta impulsiva di un sistema vale $y(t) = 10(e^{-2t} - e^{-5t})$

- a) ricavare la funzione di trasferimento del sistema
- b) tracciare i diagrammi di Bode in modulo e fase.

SISTEMI AUTOMATICI - Quesito 6

Realizzare con sole porte NAND a 2 ingressi la rete combinatoria che svolge la funzione

$$F = \overline{AB} + B\overline{C}$$

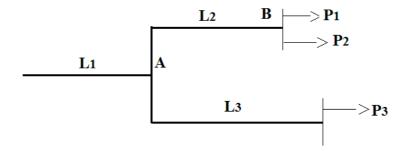

ISTITUTO TECNICO INDUSTRIALE STATALE

"ALESSANDRO ROSSI"

TPSEE - Quesito 1

Nella parte sinistra della tabella è riportata la generica linea gerarchica della sicurezza in un'azienda Completare lo schema a destra dopo aver individuato i soggetti che formano la linea gerarchica della sicurezza riferita alla scuola.

Riportare brevemente i compiti di ciascun componente.



TPSEE - Quesito 2

Tre carichi, aventi le seguenti caratteristiche:

- $P_1 = 10 \text{ kW}$, $\cos \varphi_1 = 0.80 \text{ in ritardo}$
- $P_2 = 15 \text{ kW}$, $\cos \varphi_2 = 0.50 \text{ in ritardo}$
- $P_3 = 20 \text{ kW}$, $\cos \varphi_3 = 0.92 \text{ in ritardo}$

vengono alimentati mediante una linea trifase diramata, alimentata alla tensione di 400V-50Hz. Lo schema è riportato di seguito.

Sono noti i seguenti dati di progetto:

 P_1 , P_2 e P_3 sono potenze assorbite. L_1 = 30 m, L_2 =40 m, L_3 = 50 m.

La caduta di tensione ammissibile per ogni tratto deve essere minore del 2%.

- VICENZA -

La linea è realizzata con cavi unipolari con guaina in rame con temperatura di servizio pari a 90°C, isolato in gomma EPR, posato in area libera in piano a contatto (posa 13). Si ipotizza una temperatura ambiente di 40°C.

Si propone per questo impianto un rifasamento per gruppi, con f.d.p. pari a 0,92.

Spiegare vantaggi e svantaggi del sistema di rifasamento proposto e verificare i vantaggi relativamente alla linea L₂.

Scegliere un regolatore automatico adeguato.

Sezione nominale	a 9 Corrente continua	tenza R 0°C Corrente alternata	
mm ²	Ω/km	Ω/km	Ω/km
1,5	16,96		0,144
2,5	10,17		0,132
4	6,31		0,122
6	4,21		0,114
10	2,44		0,105
16	1,54		0,098
25	0,99		0,093
35	0,71		0,089
50	0,49	0,49	0,085
70	0,35	0,35	0,084
95	0,26	0,26	0,083
120	0,21	0,21	0,080

TPSEE – Quesito 3

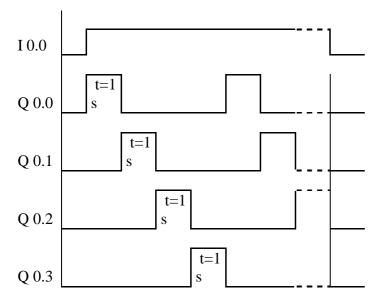
Una linea lunga 100 m funziona a 400 V – 50 Hz e alimenta un motore asincrono trifase con rotore a gabbia a 4 poli a cui viene fornita una PN=37 KW. La linea è realizzata con cavi unipolari con guaina in rame con temperatura di servizio pari a 90°C isolato in gomma EPR, posato singolarmente entro tubo interrato alla profondità di 1 m. Si ipotizza temperatura terreno 20°C, resistività termica terreno 1.5 km/W

- a) Calcolare la corrente d'impiego
- b) Dimensionare la linea di alimentazione del motore
- c) Scegliere le protezioni dalle sovracorrenti
- d) Calcolare la perdita di potenza assoluta e percentuale
- e) Calcolare la caduta di tensione industriale assoluta e percentuale
- f) Indicare la sigla di un cavo utilizzabile

- VICENZA -

TPSEE - Quesito 4

Individuare le protezioni contro i contatti indiretti di un piccolo cantiere edile in costruzione. Il sistema di distribuzione considerato è il T-T.

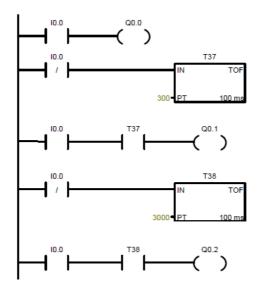

Dopo aver spiegato come si intende realizzare l'impianto di terra, dimensionare l'impianto stesso, scegliendo dispersori opportuni. Ipotizzare un terreno umido con ρ =200 Ω m

TPSEE - Quesito 5

Programmare un PLC per attivare ciclicamente quattro uscite per la durata di un secondo. Utilizzare un temporizzatore ritardato all'eccitazione (all'attivazione) e un contatore UP (conta in avanti).

Un interruttore di alimentazione ripristina l'avvio del ciclo sempre a partire dalla prima uscita. Un possibile utilizzo potrebbe essere ad esempio il controllo di un motore passo passo. Il diagramma dei tempi è il seguente

- VICENZA -



TPSEE - Quesito 6

Dopo aver disegnato il diagramma dei tempi, spiegare le operazioni svolte dal seguente programma

I0.0 è un interruttore (bistabile) aperto in condizione di riposo.

T37 e T38 sono temporizzatori ritardati alla diseccitazione.

NOTE

Il candidato risponda ai quesiti tenendo conto che:

- a) il tempo a disposizione è di 5 ore dall'inizio della prova;
- b) per lo svolgimento della prova è ammesso l'uso della calcolatrice scientifica;
- c) per tutti i calcoli utilizzare 4 cifre significative;
- d) i calcoli vanno eseguiti in ordine logico riportando le formule, valori, risultati con relativa unità di misura;
- e) è consentito l'uso del manuale.

